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Triviality and the Higgs mass lower bound
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In the minimal Standard Model, it is commonly believed that the Higgs mass cannot be too small, otherwise

Top quark dynamics makes the Higgs potential unstable. Although this Higgs mass lower bound is relevant for

current phenomenology, we show that the Higgs vacuum instability in fact does not exist and only appears when

treating incorrectly the cut-off in the renormalization of a trivial theory. We also demonstrate how to calculate

correctly the regulator-dependent Higgs mass lower bound.

1. VACUUM INSTABILITY

In this talk I report on some recent work which
was done in collaboration with Julius Kuti [1].
The as-yet unobserved Higgs boson plays a cru-
cial role in determining the threshold of new
physics beyond the Standard Model (SM). Preci-
sion Electroweak measurements indicate that, if
the SM is correct, the Higgs is light with a mass
mHiggs = 114+69

−45 GeV [2]. Even if one excludes
these experimental constraints, it is widely be-
lieved on theoretical grounds that the Higgs mass
must lie within a certain range for the SM to be
an acceptable field theory. Fig. 1 shows the cur-
rent phenomenological upper and lower mHiggs

bounds as a function of Λ, the energy scale at
which physics beyond the SM must set in [3]. Up-
per and lower bounds are very important for two
reasons. Firstly, they tell us where we should
look for the Higgs. For example, according to
Fig. 1, the SM cannot sustain a Higgs as heavy
as 1 TeV. Secondly and more importantly, if the
Higgs is observed, knowing its mass would tell
us the maximum energy scale up to which the
SM can be valid. According to this plot, the
lower bound is the relevant one for current phe-
nomenology. For example, taking the preferred
value mHiggs = 114 GeV, the SM is at most valid
up to around 100 − 1000 TeV. The phenomeno-
logical lower bound is based on the instability of
the Higgs potential if mHiggs is too small. We will
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Figure 1. Upper and lower SM mHiggs bounds [3].

show that this vacuum instability, like the Lan-
dau pole, is fake. Remarkably, just like the upper
bound, a new regulator-dependent lower bound
emerges from the triviality of the theory. An ear-
lier version of this work was presented in [4].

The apparent vacuum instability can be seen in
a Higgs-Yukawa model of a single real scalar field
(Higgs) coupled to NF degenerate fermions (Top
quarks). The 1-loop Higgs effective potential Ueff

is calculated by summing an infinite series of di-
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agrams, giving

Ueff = V + 1/2

∫
k

ln[k2 + V ′′]

− 2NF

∫
k

ln[k2 + y2Φ2],

V = m2Φ2/2 + λΦ4/24. (1)

The fermion contribution is negative, due to the
minus sign associated with every fermion loop.
Regulating the integrals and adding counterterms
to absorb the divergences in the normal fashion,
the renormalized effective potential is

Ueff = V + {(V ′′)2/64π2}{ln[V ′′/µ2] − 3/2}

−{NFy4Φ4/16π2}{ln[y2Φ2/µ2] − 3/2}. (2)

For Φ large, the negative fermion contribution
dominates if λ2 < 16NFy4 and the potential ap-
pears unstable, it no longer has its ground state at
Φ = v. For fixed Yukawa coupling y (i.e. mTop/v),
if we require that Ueff be stable, this gives a lower
bound for λ and hence mHiggs (at tree-level the
relation is λ = 3m2

Higgs/v2) [5].

Figure 2. Higgs potential (solid line) and λ(µ =
αΦ) (thick dashed line) for mHiggs = 52 GeV [6].

To eliminate the large logs in Eq. 2, the RG-
improved Higgs effective potential in the Stan-

dard Model has been calculated to two loops
[6,7]. Fig. 2 shows this effective potential for a
particular choice of mTop and mHiggs. If Fig. 2
were representing the true behavior in the SM for
mHiggs = 52 GeV, the ground state at Φ = v =
246 GeV could be preserved only by changes in
the shape of Ueff from new physics beyond the
SM around Φ ∼ 1 TeV. If mHiggs is increased, the
scale of the required new physics is also increased
as shown in Fig. 1. Fig. 2 also shows the running
coupling λ(µ = αΦ). For a particular choice of
α, the instability of the potential coincides with
λ(µ = αΛ) = 0. The lower bound in Fig. 1 is the
smallest mHiggs value such that the instability ap-
pears at Φ = Λ. The finite thickness of the lower
bound is an estimate of the uncertainty of the
theoretical calculation. In a renormalizable field
theory, one expects that this uncertainty can, in
principle, be reduced.
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Figure 3. Phase diagram of Higgs-Yukawa model.

2. VACUUM IS STABLE

The effective potential Ueff can be calcu-
lated non-perturbatively via lattice simulations as
shown by Kuti and Shen [8]. We will concentrate
on the Higgs-Yukawa model of one real scalar field
coupled to NF degenerate fermions. Fig. 3 shows
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Figure 4. dU c
eff/dΦ shown on two different scales.

the phase diagram of the lattice-regulated theory
as a function of the bare couplings λ0, y0 and m2

0.
The lattice spacing is a and the cut-off of the
theory is Λ = π/a, the maximum-allowed mo-
mentum. The Higgs and symmetric phases are
separated by a critical surface where the vacuum
expectation value and physical masses vanish,
va, mpha → 0 (all dimensionful quantities are cal-
culated in lattice-spacing units). Close to the crit-
ical surface on the Higgs side, Λ/mph = π/mpha
and ξ/a = 1/mpha are large (ξ is the correlation
length) and the theory is very close to the contin-

uum limit where the cut-off is sent to infinity. In
this scaling region, effects due to the finite cut-off
are expected to be small.

For a given action S[φ], the constraint effective
potential U c

eff in a finite volume Ω is

exp(−ΩU c
eff(Φ)) =

∫
[Dφ]δ(Φ − 1/Ω

∑
x

φ(x))

· exp(−S[φ]), (3)

where the delta-function constrains the average
of φ to a fixed value Φ . The constraint effective
potential U c

eff has an absolute minimum at non-
zero Φ in the Higgs phase even at finite volume
Ω, as the constraint potential is not convex [9].
This allows the Higgs and symmetric phases to
be clearly distinguished at finite volume.

We examine the Higgs-Yukawa model with 2
flavors of staggered lattice fermions (this corre-
sponds to NF = 8 fermions in the continuum
limit). The derivative of the constraint effective
potential is

dU c
eff/dΦ = m2

0Φ + 1/6 λ0〈φ
3〉Φ

− 2y0〈Tr(D−1[φ])〉Φ, (4)

where D is the Dirac operator and 〈...〉Φ denotes
expectation values where Φ = 1/Ω

∑
x φ(x) is

held fixed. In Fig. 4 we plot dU c
eff/dΦ for a

particular choice of bare couplings in the Higgs
phase. From the lattice simulations, we see that
dU c

eff/dΦ vanishes at Φ = 0 (a local maximum)
and Φ ≈ 3.1 (the absolute minimum). There is
no indication that the potential becomes unstable
at large Φ.

We also compare the results of the simula-
tions with 1-loop renormalized perturbation the-
ory. Adding explicitly the counterterms and keep-
ing the cut-off Λ finite, the 1-loop constraint ef-
fective potential is

U c
eff = V + 1/2

∫ Λ

k 6=0

ln[1 + V ′′/k2]

− 2NF

∫ Λ

k 6=0

ln[1 + y2Φ2/k2] (5)

− 1/2

∫ Λ

k 6=0

{V ′′/k2 − (V ′′)2/2[k2 + µ2]2}

+ 2NF

∫ Λ

k 6=0

{y2Φ2/k2 − y4Φ4/2[k2 + µ2]2}.
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Naively taking the cut-off Λ → ∞ gives the con-
tinuum effective potential as in Eq. 2. In Fig. 4
we see that for small Φ, continuum renormalized
perturbation theory agrees well with the simu-
lation results, even though the cut-off is naively
sent to infinity. However for larger Φ, continuum
perturbation theory incorrectly predicts that the
ground state is unstable. In contrast, renormal-
ized perturbation theory with a finite cut-off is
in perfect agreement with the non-perturbative
simulation results for all values of Φ. The ground
state of the theory is in fact stable.

3. TRIVIALITY

The Higgs potential only appears unstable
when the cut-off is incorrectly sent to infin-
ity. The standard renormalization procedure of
adding counterterms and removing the cut-off
fails in a trivial theory. A quantum field the-
ory is defined by a set of bare couplings and a
regulator. A theory is trivial if the renormalized
couplings vanish when the regulator is removed,
for any choice of bare couplings. In this situation,
the cut-off must remain finite to have a non-trivial
interacting theory.

We will show how standard renormalization
fails in the trivial Higgs-Yukawa model in the
large-NF limit. In terms of the bare fields and
couplings, the Lagrangian is

L = m2
0φ

2
0/2 + λ0φ

4
0/24 + y0φ0Ψ̄

a
0Ψ

a
0 + K.E.

= m2
0Zφφ2/2 + λ0Z

2
φφ4/24

+ y0Z
1/2

φ ZΨφΨ̄aΨa + K.E.

= (m2 + δm2)φ2/2 + (λ + δλ)φ4/24

+ (y + δy)φΨ̄aΨa + K.E. (6)

where a = 1, ..., NF, φ0 = Z
1/2

φ φ, Ψ0 = Z
1/2

Ψ Ψ and

δm2, δλ and δy are the counterterms. In the limit
NF → ∞, only Feynman diagrams with fermion
loops contribute, hence ZΨ = 1. The bare and
renormalized couplings are related as

m2
0Zφ = m2 + δm2, λ0Z

2
φ = λ + δλ,

y0Z
1/2

φ = y + δy, (7)
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Figure 5. Renormalized couplings λ(µ) and y(µ).

where the 1-loop counterterms are

δm2 = 4NFy2

∫ Λ

k

1/k2,

δy = 0,

δλ = −24NFy4

∫ Λ

k

1/[k2 + µ2]2, (8)

and the wave-function renormalization is

G−1
φ (p2) = p2 + m2

Higgs − Σ(p2),

Z−1
φ = dG−1

φ /dp2|p2=0,

Σ(p2) = −4NFy2

∫ Λ

k

[µ2 − k · (k − p)]/

{[k2 + µ2][(k − p)2 + µ2]}. (9)
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Note that we keep the regulator cut-off Λ finite.
The bare couplings and physical predictions are
independent of the renormalization group scale µ.
Keeping the bare couplings fixed, we vary the RG
scale µ and use Eq. 7 to determine the RG flow of
the renormalized couplings m2(µ), λ(µ) and y(µ).

In Fig. 5 we plot the RG flow of λ(µ) and y(µ)
using a lattice regulator for the integrals and with
the arbitrary choice λ0 = 0.1, y0 = 0.3. The RG
scale µ is in lattice-spacing units. When the RG
scale is much lower than the cut-off (µ � 1), the
renormalized couplings flow exactly as predicted
by the continuum large-NF RG equations

y2(µ) = y2
1/[1 − (NFy2

1/4π2) lnµ]

λ(µ) = 12y2(µ) + c1y
4(µ). (10)

In the limit where the cut-off is infinite, µ → 0
and the renormalized couplings y(µ) and λ(µ)
vanish. As we said, the theory is trivial, with
no interaction when the regulator is removed. In
this regime (µ � 1), continuum renormalized per-
turbation theory is perfectly valid, as the effects
of the finite cut-off are negligible. When the RG
scale is close to the cut-off (µ ∼ 1), the true RG
flow of the couplings deviates from the continuum
prediction. As µ increases, continuum perturba-
tion theory predicts that λ(µ) becomes negative
— this is the putative vacuum instability. How-
ever for µ � 1, Eqs. 8 and 9 show that δλ → 0
and Zφ → 1. The renormalized couplings actu-
ally flow to the bare values λ(µ) → λ0, y(µ) → y0,
exactly as shown in Fig. 5. The continuum pre-
diction that λ(µ) turns negative and the poten-
tial becomes unstable is incorrect, because the
cut-off dependence of the true RG flow has been
neglected.

4. TRUE HIGGS LOWER BOUND

The widely-accepted mHiggs lower bound of
Fig. 1 is based on a vacuum instability appearing
if the Higgs is too light. Using non-perturbative
lattice calculations, perturbation theory, and the
large-NF limit, we see that there is no vacuum
instability. The theory is trivial and the cut-off
must be kept finite for the renormalized couplings
not to vanish. The effective potential only ap-
pears unstable when the cut-off dependence of the
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Figure 6. Summary of lattice simulation results.

renormalization procedure is ignored.
If there is no vacuum instability, is there an

mHiggs lower bound? As the theory is trivial, we
require a finite cut-off to have a non-trivial in-
teraction. In the Higgs phase of the theory very
close to the critical surface (as shown in Fig. 3),
the cut-off is finite but large. For a fixed cut-off,
upper and lower bounds for mHiggs can be de-
termined by exploring all allowed bare couplings
[10]. Moving away from the critical surface, the
cut-off decreases and at some point the theory
is completely dominated by cut-off effects and
ceases to be physically acceptable .

We have used non-perturbative lattice simula-
tions to explore the phase diagram of the Higgs-
Yukawa model with a single real scalar field cou-
pled to 2 flavors of staggered fermions (NF = 8
continuum flavors). In Fig. 6 we display a sum-
mary of the results. All quantities are calculated
in units of the lattice spacing a. For illustrative
purposes, the cut-off Λ = π/a is converted into
physical units using the Standard Model value
v = 246 GeV. For example, va = 0.2 corresponds
to Λ/v = π/0.2 i.e. Λ ∼ 4 TeV. For fixed mTop

and Λ, we find that the smallest Higgs mass is
generated when the bare Higgs coupling λ0 → 0.



6

2 3 4 5 6 7 8 9 10 11

Λ/v
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

m
H
i
g
g
s
/
v

m
Top

= 175 GeV

Figure 7. Lower bound for mTop = 175 GeV.

The bare Higgs coupling cannot be negative, oth-
erwise the theory is not defined, as all functional
integrals diverge. The solid curves in Fig. 6 cor-
respond to λ0 = 0 and Λ fixed in physical units
(with three bare parameters and two constraints,
this leaves one degree of freedom). With a finite
cut-off, one must keep track of the finite cut-off
effects. We use the ad hoc definition mpha = 0.5,
applied to both Higgs and Top masses, as the
smallest allowed correlation length, correspond-
ing to the dashed line in Fig. 6. To the left of
the dashed line, we expect the cut-off effects to
be reasonably small and the theory to be physi-
cally acceptable. A similar constraint was used
by Lüscher and Weisz for the O(4) Higgs sec-
tor, where the violation of rotational symmetry in
Goldstone-boson scattering was investigated [11].

Interpolating the results sketched in Fig. 6 we
can extract the Higgs mass lower bound as a func-
tion of the cut-off for fixed physical Top mass.
The curve in Fig. 7 corresponds to the Higgs lower
bound at mTop = 175 GeV. It is quite natural
that the Higgs lower bound is attained when the
bare Higgs coupling λ0 = 0. Previous studies of
the pure Higgs λφ4 theory showed that the mHiggs

upper bound is reached when λ0 = ∞ [12].
One important consideration is that the lower

bound is regulator-dependent. Consider the
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Figure 8. Regulator-dependence of lower bound.

NF → ∞ limit of the Higgs-Yukawa model, where
perturbation theory becomes exact. We compare
the Higgs lower bound, calculated using three dif-
ferent regulators: a hard cut-off in the momen-
tum integration, a lattice regulator, and a higher-
derivative propagator k2 → k2(1 + k2/Λ2)2. In
Fig. 8 we plot the Higgs lower bound for a fixed
Top mass. Even when the cut-off is quite large,
the lower bound varies by as much as 20% among
these three regulators. This is a feature of trivial
theories which cannot be ignored — when the cut-
off is finite, not all quantities are universal. For
any given regulator, one can calculate the Higgs
lower bound to whatever desired accuracy. How-
ever, one cannot make arbitrarily accurate pre-
dictions which are regulator-independent. There
is an inherent ambiguity in the bound and one
can at best estimate the energy scale where the
theory is no longer physically acceptable.

5. PROPOSAL

We have examined a toy Higgs-Yukawa model
of one real scalar field coupled to NF degenerate
fermions. Earlier studies of Higgs-Yukawa mod-
els were reported in [13]. To make a quantitative
statement relevant for the Standard Model, one
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needs to study a more physical model. A realistic
approximation would be an SU(2) Higgs doublet
(corresponding to an O(4)-symmetric scalar field)
coupled to a single fermion flavor (the Top quark).
Gluons should also be included, as the QCD cou-
pling makes a significant contribution to the RG
flow of the Top Yukawa coupling. The remain-
ing degrees of freedom of the Standard Model
are expected to play a negligible role in the lower
bound. If it is only possible to calculate the lower
bound via lattice simulations, a gluon-Higgs-Top
model is a very challenging system to explore.
The only completely satisfactory way to repre-
sent a single massless fermion flavor on the lat-
tice is to use a chiral Ginsparg-Wilson fermion
[14], which is computationally very demanding.
Coupled to fluctuating scalar fields, the positiv-
ity of the fermion determinant in the functional
integral is not guaranteed, and must be examined
in the Higgs phase of the theory. If the proba-
bility distribution in the functional integral can
be negative, this could make numerical compu-
tations very difficult (the so-call Sign problem).
This is analogous to the situation in lattice QCD
and how light a quark mass is possible in practi-
cal numerical simulations, which is very sensitive
to the nature of the lattice fermion. Despite these
challenges, we believe a realistic lattice study of
a gluon-Higgs-Top system can make a significant
and timely contribution to current tests of the
Standard Model.
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